

Informational Forum on Generators

Connecticut Energy & Technology Committee

Francis Pullaro Executive Director January 31, 2019

About RENEW

An association of the renewable energy industry and environmental advocates united to promote large-scale renewable energy in the Northeast.

Affordable and Reliable Renewable Energy

Renewables First

Meeting Connecticut's Energy Needs

A "renewables first" strategy couples a strong Renewable Portfolio Standard (RPS) backed by state procurements of cost-effective RPS resources

- Provide price stability
- Meet Global Warming Solution Act (GWSA) greenhouse (GHG) reduction requirements
- Propel clean energy job growth
- Secure fuel diversity, increase reliability
- Reduce power plant toxic emissions and waste and water used for cooling
- Substitute renewable and storage peak generation to force out high emitting, high price fossil fueled peaking plants

What is the

Renewable Portfolio Standard (RPS)?

- A requirement on retail electric suppliers...
- to supply a minimum amount (20% in 2020 rising to 40% in 2030) of their retail load...
- with eligible sources of renewable energy.

It typically has penalties for non-compliance and is often accompanied by a tradable Renewable Energy Certificate (REC) program to facilitate compliance. No two states programs are designed the same way.

Large-Scale Renewable Energy Potential

<u>Abundance of renewable resources to meet RPS growth.</u> Local small-scale solar growth continues and developers are offering a vast supply of large-scale wind and solar from across the region . . .

RENEW Grid-Level Renewables Reach Cost Parity

300

250

200

* Assumes wind and solar qualify for limited exemption being phased-out to earn capacity revenue; otherwise renewables prohibited from earning capacity revenue

Forward Clean Energy Market

A coalition of like-minded entities in RENEW Northeast (Brookfield Renewables, Conservation Law Foundation and NextEra) and others developed a framework for a Forward Clean Energy Market (FCEM).

- States "opt-in" to procure all resources needed to meet their policy goals in a market-based forward auction, which is competitive, transparent and cost-effective
- Treats new and existing the same and creates value for existing clean energy resources (small hydro) and resources (like wind and solar) coming off state supported contracts
- Payment based on resource response in time and location based on ability to reduce GHG emissions – a "dynamic REC"
- Procuring in this fashion means that such resources are in-market and treated as supply in ISO New England forward capacity market, i.e., states do not pay twice for clean energy and capacity

Renewables and Winter Reliability

Wind as Winter Baseload Power

Wind as Winter Baseload Power

Offshore Wind Projected Performance 16-Day 2017-2018 Cold Spell						
Capacity factor	70%					
Energy savings (millions)	\$80-85					
Avoided CO2 emissions	11%					
1600 MW Offshore Project Generation						
	16-Day 2017-2018 Cold Capacity factor Energy savings (millions) Avoided CO2 emissions					

Source: ISO New England System Planning Department December 17, 2018

Offshore Wind and Jobs

Offshore Wind Job Predictions

4 Gigawatts

- Balanceofplant
- In stallation and commissioning
- OMS

- Development and project management
- Turbine
- Balanceofplant
- Installation and commissioning
- OMS

For the high (8 GW) scenario in 2028, there would be 500,000 Full Time Equivilent (FTE) job years, with a peak of 36,300 FTE jobs.

8 Gigawatts

Offshore Wind Job Predictions

Total offshore wind occupations

- ■In stallation, Maintenance, and Repair Occupations
- ■Management Occupations
- ■Production Occupations
- Architecture and Engineering Occupations
- Transportation and Material Moving Occupations
- Business and Financial Operations Occupations
- Office and Administrative Support Occupations
- Computer and Mathematical Occupations
- Sales and Related Occupations
- Arts, Design, Entertainment, Sports, and Media Occupations
- Building and Grounds Cleaning and Maintenance
- Construction and Extraction Occupations
- ∎Other

Energy Storage and Renewables

Cleaning the Peak with Storage

10 MW / 40 MWh ESR Simulated Winter Deliveries

Profit Maximizing ESR Schedule Schedule produced with DaymarkEA *TideMarker*₂

Massachusetts developing a Clean Peak Energy Standard requiring retail electricity providers to purchase attributes from resources (storage and renewables) for their production at peak times.

RENEW to recommend 4 hour peaks for summer, winter & shoulder seasons

Cleaning the Peak with Storage

Common Feature: Power Purchase Agreements

Colorado's Xcel Energy Bids for largely PPAs involving solar with storage were received at a median price of \$36/MWh, and wind with storage at \$21/MWh, prices so low they have generated a buzz nationally among those who track the utility industry.

Connecticut DEEP Selects two solar with storage projects in 2018 competitive RFP

Large-Scale Solar Development

Drivers of Large Solar on Farmland

Land Categories for Development: Moving Across the Spectrum

Connecticut Farmland Is Increasing

That was then: DOA states that from 1982 to 1997 Connecticut lost a vast amount of agricultural land.

Recent times: The table to the right shows the amount of <u>agricultural</u> <u>land in Connecticut has actually</u> <u>increased by nearly 80,000 acres</u> <u>since 2002 -</u> from 357,154 acres in 2002 to 436,539 acres ten years later. Data for 2017 is not yet available.

Connecticut

State and County Data Volume 1 • Geographic Area Series • Part 7

AC-12-A-7

Table 1. Historical Highlights: 2012 and Earlier Census Years [For meaning of abbreviations and symbols, see introductory text.]

All farms	2012	2007	2002	1997
Farms number Land in farms acres Average size of farm	5,977 436,539 73	4,916 405,616 83	4.191 357,154 85	4,905 406,222 83
Estimated market value of land and buildings : Average per farmdollars	809,375	1,045,133	840,302	516,347
Average per acredollars	11,082	12,667	9,491	6,270
Estimated market value of all machinery and equipment ¹ \$1,000 Average per farm	352,391 58,958	315,000 64,090	214,739 51,214	182,266 37,167
Farms by size: 1 to 9 acres 10 to 49 acres 50 to 179 acres 180 to 499 acres 500 to 1999 acres 1.000 to 1.999 acres 2.000 acres or more	1,768 2,403 1,317 379 67 29 14	1,232 1,894 1,287 400 63 30 10	984 1,625 1,077 387 91 23 4	1,065 1,835 1,447 453 75 26 4
Total cropland	4.011	3,884	3,395 170,673	4,242 200,586
Harvested cropland	3,781 126,835	3,517	3.000	3,848 153,446
Irrigated landfarms acres	1,011 9,272	789 9,901	801 10,139	809 7,689

Large Solar and Farmland Are Compatible

Solar projects of this size also provide much needed new local tax revenue streams, which often exceed hundreds of thousands of dollars annually. Utility-scale solar does not need services or other forms of investment from the municipality. Larger solar projects also create many short-term construction jobs and several full-time positions once the projects are operational.

Land payments for utility-scale solar help farmers diversify their revenue stream and alleviate the pressure to sell off the land, which may be slated for more permanent forms of development.

Recommendations

Recommendations

- Establish a long-term schedule of renewable energy procurements: "DEEP should exercise its full discretionary procurement authority for gridscale renewable and zero-carbon energy. Continued investment in diverse, zero-carbon, renewable energy technologies will be necessary for Connecticut to meet its GHG emissions reduction goals." (CG3 Recommendations December, 2018)
- Overcome BANANA (Build Absolutely Nothing Anywhere Near Anything) (or "Anyone") efforts that make it more challenging to site renewable energy projects compared to other forms of development. Large wind is facing recently enacted and proposed anti-wind siting laws (CT, VT, NH, ME, MA). Larger solar projects are facing growing opposition on aesthetic concerns and use of open space (MA, CT and RI).
- **Transmission upgrades needed** to deliver wind energy from remote areas to load centers; six New England states have been unable to work cooperatively to solve this problem; New York, a large state with its own grid operator, has advanced transmission to serve public policy goals.

About RENEW

An association of the renewable energy industry and environmental advocates united to promote renewable energy in New England and New York.

> Contact Francis Pullaro Executive Director RENEW Northeast Web: renew-ne.org Follow us: @Renew_NE